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Abstract 

 
In this paper, we propose a framework for multi-focus image fusion called PATN. In our 
approach, by aggregating deep features extracted based on the U-type Transformer mechanism 
and shallow features extracted using the PSA module, we make PATN feed both long-range 
image texture information and focus on local detail information of the image. Meanwhile, the 
edge-preserving information value of the fused image is enhanced using a dense residual block 
containing the Sobel gradient operator, and three loss functions are introduced to retain more 
source image texture information. PATN is compared with 17 more advanced MFIF methods 
on three datasets to verify the effectiveness and robustness of PATN. 
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1. Introduction 
Since the development of image processing, multi-focus image fusion has existed as a branch 
of image fusion. Full-focus images are difficult to obtain due to the depth of field of optical 
shooting lenses or natural environmental conditions. For this problem, multi-focus image 
fusion technology plays a great role, which extracts the shallow features of these images from 
a pair or a group of captured images, adopts the corresponding algorithm to fuse the extracted 
focusing features, smooths out the boundaries of the focusing and out-of-focus regions, retains 
the basic information in the source image, and obtains the final fully-focused clear image to 
ensure that all target objects are in focus. 

The fused images obtained from image fusion are used by researchers in fields such as 
image segmentation and target recognition, and image fusion techniques and methods in other 
fields also promote each other. Multi-focus image fusion methods based on consistency 
verification play a role in image segmentation, where consistency verification yields the initial 
decision map of the corresponding source image, and image segmentation techniques are used 
to process the target image in the image that needs to be segmented.  

From these two points, multi-focus image fusion as a branch in the field of image fusion, 
the methods in this field are in urgent need of improvement. Infrared and visible image fusion, 
multi-exposure image fusion, multi-spectral image fusion, multi-modal image fusion, and 
multi-focus image fusion contribute to the development of the broad category of image fusion, 
and the commonality of all these branches is that the source images are synthesized with higher 
quality and better results by image fusion algorithms. Multi-focus image fusion is 
characterized by the fact that the input pair of source images is of the same scene, and there 
are focused and out-of-focus regions in the scene, and the focused and out-of-focus regions 
are realized to be fully complementary. Due to the limitation of equipment and knowledge, 
many previous methods are performed based on traditional algorithms, and the final results 
obtained are poor. 

 
Fig. 1. Test results of PATN on the Lytro dataset. From left to right are: Near-focused, Far-

focused, Decision-Map, and Fused images. 
 

With the development of deep learning in the field of digital image processing, 
convolutional neural networks have played an important role in the field of image fusion. For 
large-scale training, CNNs are more suitable for image vision processing tasks because of the 
unique superiority of convolutional neural networks compared with traditional methods, so 
that the images processed by CNN-based networks contain more information in the source 
images. At this stage, most of the existing MFIF methods are based on CNNs, but CNNs 
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cannot establish long-range dependencies and cannot focus on global feature information, 
while the Transformer mechanism can make up for this deficiency of CNNs, so the 
Transformer mechanism is introduced into the image fusion field. This ensures that the features 
of the source image are perfectly mapped to the fused image, and the fused image finally 
obtained contains more original information. At present, the main problems of multi-focus 
image fusion are: 1) the CNN-based MFIF method cannot focus on the global features, 
resulting in the fused image retaining less overall original information; 2) the MFIF method 
that introduces the attention mechanism focuses too much on local features, resulting in the 
final image having more prominent local features. However, the dividing line of the focus/off-
focus region is obvious and the visual effect is poor. 

To address the current limitations of CNN in the field of multi-focus image fusion, we 
introduce Transformer to multi-focus image fusion and propose a network based on the U-Net 
framework combining CNN and Transformer to handle the multi-focus image fusion task. The 
model proposed in this paper has the following four advantages. 

1) An efficient architecture is designed for multi-focus image fusion. The architecture uses 
a U-shaped Transformer as the core component for multi-focus image fusion, shallow feature 
encoding and high-level feature recovery decoding space. That is, the proposed network is 
used for the fusion task of multi-focused images based on the U-Net framework using the 
Transformer capable of focusing on the operating principle of long-range features, combined 
with the characteristics of CNN networks, the proposed network is used for the fusion task of 
multi-focus images to obtain the desired fused images. 

2) To ensure that global features and local features are attended to simultaneously, we 
introduce a polarized self-attention mechanism to attend to the detailed features in the original 
image. Multi-focus image fusion can be regarded as both a classification task and a regression 
task, introducing an attention mechanism that focuses on both channel features and spatial 
features, using sliding windows with Transformer to stitch the upper window features, making 
attention calculations on pixel points, expecting pixel targets to be clearly extracted, and thus 
achieving a high-quality pixel regression task. 

3) In order to enhance the extraction of decision map and image edge information by the 
network, we use the Sobel operator with direction as the gradient operator of the network to 
calculate the approximate gradient of the image gray scale. Because the whole fusion image is 
the final result of the fusion of a set of source images, including both the clear target in the 
focus region and the junction line between the out-of-focus region and the focus region, in 
order to ensure a good visual effect, the fusion image should be as smooth and unobtrusive as 
possible, so the Sobel operator is used as the gradient operator to sense the change of image 
grayscale while describing the detail information on the fine-grained space. 

4) In order to comprehensively examine the performance of the proposed network, we 
simultaneously evaluate the network in terms of objective quantitative metrics and subjective 
visual perception, and compare it with a variety of existing MFIF methods on three datasets, 
and the comparison results all reveal the natural advantages of our framework for the task of 
generating fused images. 

2. Related Works 

The background related to our proposed method and what contributed to the progress of our 
work will be presented in this subsection, mainly including traditional methods in the field of 
multi-focus image fusion, deep learning methods and the U-based Transformer method used 
in this paper. 
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2.1 Multi-focus image fusion based on traditional methods 

MFIF methods based on traditional methods can be basically divided into three categories: 
transform domain methods[1], [2], [3] that follow transform rules, spatial domain methods[4], 
[5], [6] that process images based on the same space, and methods that combine transform and 
spatial domains.Methods based on the transform domain are generally easy to implement and 
are more robust to processing noise [7]. Discrete Wavelet Transform (DWT) [8], higher-order 
singular value decomposition and Non-Subsampled Contour wavelet Tansform (NSCT) [9] 
are all methods for multi-focus image fusion processing based on the transform domain. Such 
methods often suffer from the problem that the weight coefficients in the training process are 
difficult to optimize, and the obtained fused images are also prone to The obtained fused 
images are also prone to blurring and low contrast problems. The spatial domain-based 
methods are used to use image blocks for multi-focus image fusion processing, where the input 
image is cut into smaller image blocks, and the fused image is obtained by using the features 
in the image plus the fusion strategy and adopting the designed fusion rules. Methods based 
on image denoising [10], PCA transform methods, and guided filtering (GF) [11] are all 
methods for image fusion based on the spatial domain. Block effects and boundary blurring 
problems are more likely to occur in such methods. 

Among the transform domain methods, the most common are multi-scale transforms such 
as wavelet transform and Laplace transform, which are prone to produce more pronounced 
flicker or jitter in the fused images. The final fusion effect of the spatial domain-based methods 
depends largely on the accuracy of the mask image obtained during processing, which 
generally includes the HIS transform and PCA transform, etc. The HIS transform is generally 
applicable to color images with relatively high resolution, while the PCA transform has a better 
fusion effect under the premise that the color of the source image is closer, which is the 
limitation of these methods. 

2.2 Multi-focus image fusion based on deep learning 

Due to the powerful performance of deep learning in visual processing tasks, researchers 
have introduced deep learning to the field of multi-focus image fusion. Deep learning 
algorithms learn a large amount of data that needs to be processed by machines[12], gradually 
fitting an optimized model whose dynamic convolution process can easily extract the features 
that need to be learned. According to the dynamic learning process of deep learning[13], 
supervised and unsupervised models have been developed one after another, and the field of 
multi-focused image fusion presents a promising form. 

The parallel processing of the input data using the direct mapping relationship between the 
source image and the focus is the hallmark of CNN applications in the field of multi-focus 
image fusion. GAN networks, two networks confront each other and learn from each other, 
which train data based on unsupervised methods to generate fused images directly, but the 
generalizability and practicality of the networks need to be considered. A pixel-level CNN 
network (p-CNN) based on domain information is proposed to solve the problem of artifacts 
in fused images, in which the pixel focus level in the source image is precisely measured by a 
focus/off-focus mask, which alleviates the artifacts in multi-focus fused images to some extent. 
The DSIFT method starts from SIFT descriptors, and the pixel activity level is reflected by 
local feature descriptors. The refinement of the decision map using local focus and matching 
features facilitates the reflection of local features of the fused image. Based on the rethinking 
of image fusion, the PMGI method is used as a general image fusion framework in the field of 
multi-focus image fusion, which unifies the relationship between the intensity ratio and texture 
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information of the source image by exchanging the information of the extracted gradient 
direction and that of the image intensity direction. 

Convolutional neural network-based methods can focus on the corresponding features in 
multi-focus image fusion tasks with the help of attention mechanism, but the limitation of 
CNN is that it cannot provide long-term global attention to the features, which can easily lead 
to the emergence of problems such as large-scale blurring or small-area artifacts in the fused 
image, while some algorithmic methods tend to pay excessive attention to some details in the 
image and ignore the overall visual effect of the fused image. 

2.3 Transformer Model  

Transformer has achieved great success in the field of natural language processing and has 
caught up with CNN structures in image processing tasks. transformer finds different angular 
relationships between different input sequences by using a multi-headed attention mechanism, 
which in turn builds long-term dependence on the model. Transformer's flexible use of the 
sliding window mechanism to segment the input image into smaller image blocks is effective 
for downstream tasks of image tasks. The use of Transformer in the areas of target detection 
and image segmentation, where the focus is on downstream tasks, is even more self-evident. 

 

 
Fig. 2. Overall architecture of PATN. PATN mainly contains Transformer for extracting deep features, 

channel attention and spatial attention for extracting local features, and continuous dense residual 
blocks for enhancing edge information. 

 
Some of the researches tried to solve the inherent defects of CNN networks by deepening 

the depth of the network model, but the results were not satisfactory. Transformer adopts a 
different calculation method and operation method from CNN, which has awakened the 
vitality in the field of computer vision and opened new ideas in the direction of CV. From there, 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 4, April 2023               1239  

Transformer has created a boom in the field of computer vision, such as medical image 
segmentation, vehicle lane line detection, target detection, etc. In these fields, Transformer has 
proven that the results obtained using the Transformer mechanism are better, no less than the 
processing results of CNN, or even better than the results using CNN methods. 

Based on the powerful modeling capability of the Transformer mechanism and taking 
advantage of the U-Net architecture for image tasks, inspired by both, we introduce the 
Transformer [14] based on the U-Net framework for image fusion to handle multi-focus image 
fusion tasks, ensuring that the obtained fused images have the advantage of both global and 
local features. 

3. Method 

The proposed approach will be described in detail in this section, including the modules used 
in the network architecture and the overall network architecture design, and the proposed 
overall network architecture is shown in Fig. 2.  

3.1 Framework overview 

As shown in Fig. 2, our proposed network architecture is based on the U-Net combined 
with Transformer architecture. We use a large dataset of segmented images to train the network. 
In the feature extraction phase, we use four identical stages for feature extraction of the input 
source images, all four stages include Linear Embedding and two consecutive Swin 
Transformer[15]  blocks. Before entering these four stages, the designed network performs a 
cutting operation on the image after Concatenate to cut the image into smaller image blocks, 
while processing the height and width of the input image, which is reflected in the 

dimensionality of the Stage 1 in our network becomes 
4 4
H W C× × , and the corresponding 

dimensionality of each subsequent stage is reduced to achieve the purpose of reducing the 
resolution of the processed feature map. To enhance the extraction of features in the source 
image by the network, we add PSA polarized attention at each stage of feature extraction, a 
mechanism shown in Fig. 2, which contains both channel attention and spatial attention to 
capture the pixel information contained in the image from multiple perspectives. PSA [16] has 
two implementations, parallel and series, and its parallel approach is borrowed in our network 
to enhance the extraction of pixel information. 

In the fusion phase of the network, we use four ascending dimensional descending channel 
operations to fuse the extracted features. Similar to the feature extraction phase, all four phases 
consist of a Patch Expanding and two consecutive Swin Transformer blocks, and these 
architectures are designed to ensure that information between different windows in the two-
layer module can be interacted with, while different queries can share the same set of keys 
when doing self-attentive computation, which enhances the usefulness of the network. The 
information from the feature extraction stage and the fusion stage is fused and fed to the feature 
enhancement stage, which consists of four consecutive and dense residual modules using 
Sobel operator as the gradient operator [17]. The use of the dense residual module facilitates 
the complementary image information, and the Sobel operator can enhance the edge 
information of the image from two gradient directions to enrich the deep detail feature 
information in the feature map at fine granularity for the purpose of image reconstruction. The 
process of feature enhancement is described in detail in Section 3.3, and here we just describe 
the general process of network fusion of images. 
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3.2 Transformer-Based U-Net Framework 

3.2.1 U-Net framework for multi-focus image fusion 

The U-Net-based framework for multi-focus image fusion is shown in Fig. 3. We input a 
pair of source images to the feature extraction stage of the network after Concatenate, and this 
stage performs the upscaling operation on the feature channel dimensions to deepen the 
channel dimension extraction of features, refine the features to be extracted, and enrich the 
multi-channel feature map information. Secondly, the obtained feature maps are input to the 
feature fusion stage of the network, where the extracted features are upsampled to recover the 
features contained in the final desired fused image, and the channel dimension is downsampled 
at the same time. Finally, the integrated feature maps are transported to the feature 
enhancement stage, and the edge features of the images are enhanced using the corresponding 
feature enhancement operations, so that the fused images contain more original information 
and are more consistent with human visual perception. 

 
Fig. 3. General procedure of PATN architecture. PATN consists of feature extraction phase, feature 

fusion phase and feature enhancement phase. 

3.2.2 A-Trans Block: a module for feature extraction 

Inspired by Swin Transformer and PSA polarized attention mechanism, we use a parallel 
PSA mechanism to perform residual attention attention on the overall module containing Patch 
Embedding and two consecutive Swin Transformer Blocks, i.e., Attention-Transformer Block. 
This module combines the advantages of Transformer and CNN mechanisms to 
simultaneously feature attention to the phase of feature extraction from channel attention and 
spatial attention. Specifically, the CNN module consists of parallel PSAs. This module 
combines the advantages of Transformer and CNN mechanisms to simultaneously feature 
attention to the phase of feature extraction from channel attention and spatial attention. 
Specifically, the CNN module consists of parallel PSAs. The dimensionality of the input 
feature map inC H WX × ×∈ℜ   before entering the PSA is the same as that entering the 
Transformer, and the features enter the PSA internally to maintain high resolution, PSA is 
introduced to enhance the nonlinearity of the Transformer module and fit the output 
distribution with higher delicacy. And at the output, the feature tensor is outC H WZ × ×∈ℜ  

outC H WZ × ×∈ℜ , that is, in the first stage of feature extraction, 96in outC C= = , after the PSA 
mechanism ( )Z PSA X X= × , the detailed PSA processing process channel number change 
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is shown in Fig. 4. Among them, for the channel attention, the input feature map is set as 
1 1( )ch cPSA X × ×∈ℜ  ,and the feature map is calculated as: 

 
1| 1 max 2( ) [ (( ( ( )) ( ( ( )))))]ch

SG z v soft qPSA X F W W X F W Xθ σ σ= ×  (1) 

where , qW , vW  represents the convolution kernel  1×1 for the convolution layer, 1σ ， 2σ  

represents the reshape operation, maxsoftF  represents the softmax operator, and × represents 

the dot product operation in the matrix, while max
1

1

( )
i

m

xk

soft ik
xi

m

eF X x
e=

=

=∑
∑

 . In Stage 1, all 

other feature channels are / 2 48C = ， and only the corresponding channel branching 
channels are ( )ch ch ch C H WZ PSA X X × ×= ∈ℜe ，and che   denotes the operator in the 
channel multiplication operation. 

 
Fig. 4. PSA module, which consists of channel attention and spatial attention mechanisms, with the 

detailed process channel number variation shown in Fig. 4. 
 

Also, for the other spatial channel of PSA note that the calculation is: 

 
111( ) (:, , )

ji

GlobalP
H W

F X X i j
H W

==

=
× ∑∑  (2) 

 max 1( ( ( ( ))))soft GlobalP qF F F W Xσ=  (3) 

 3 2( ) [ ( ( ))]sp
SG vPSA X F F W Xσ σ= ×  (4) 

where , qW , vW  represents the convolution layer with a convolutional kernel of 1×1， iσ  

represents the i   reshape operations, GPF   represents a global average pooling operation, 
and for the spatial branch output of the feature map is calculated as: 
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 ( )sp sp sp C H WZ PSA X X × ×= ∈ℜe  (5) 

Similar to the channel branch attention, spe   denotes the operator of the spatial 
multiplication operation. The final attention branch parallel composition we use is: 

 ( )ch ch chZ PSA X X= e  (6) 

 ( )sp sp spZ PSA X X= e  (7) 

 ( ) ch spPSA X Z Z= +  (8) 

After the PSA module, the input features are added with the features that go through the 
Transformer module to complete a stage of extracting features, using four stages to extract 
features for the whole feature extraction stage. We set the Transformer Block layer parameter 
for each stage as (2, 2, 2, 2)layers = ，and the structure of two consecutive Swin Transformer 
Blocks is shown in Fig. 2. Among them, the module is calculated as follows: 

 1 1ẑ ( ( ))l l lW MSA LN z z− −= − +  (9) 

 ˆ ˆ( ( ))l l lz MLP LN z z= +  (10) 

 1 ( ( )) ̂ zl l lSW MSA LNz z+ = − +  (11) 

 1 1 1ˆ ˆ( ( ))l l lMLP LNz z z+ + += +  (12) 

Where ˆlz   and  lz   represent the output of the sliding window W-MSA and MLP module 
layer l , respectively, while the self-attentive mechanism can be calculated by the following 
equation: 

 ( , , ) ( )
TQKAttention Q K V SoftMax B V

d
= +  (13) 

Where 
2

, , M dQ K V R ×∈   represent the query, key and value matrices respectively, 2M  
denote the number of patches in the window, d denotes the dimension of the query or key, and 
value is from the bias matrix (2 1) (2 1)ˆ M MB R − × +∈ . 

3.2.3 DRB: Dense Residual Module 

In order to perform the enhancement operation on the feature map output from the feature 
fusion stage, we introduce the dense residual module containing the Sobel operator as the 
gradient operator. The residual module consists of a convolutional layer with a convolutional 
kernel size of 3 3×  and the Leaky ReLU activation function for successive dense connection 
operations, the obtained densely connected features are convolved by 1 1× , and the image 
gradient is computed using the conventional Sobel operator. The feature map obtained from 
the gradient calculation is convolved by 1 1× , and the residuals are summed with the densely 
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connected module to input the edge-enhanced feature map 1mF +  , which is calculated as: 

 1 2( ) ( ) ( )m m m mF DRB F conv F conv F+ = = ⊕ ∇  (14) 

Where, mF   is the input feature map, 2conv   represents two consecutive cascaded 
convolution operations in the map, and ∇  is the Sobel gradient operation used. 

The final feature enhancement phase of the network, we use four consecutive dense residual 
modules, combined with the loss function we use, to output the final fused image and its 
decision map, and the DRB module is shown in Fig. 5 in its exact composition. 

 
Fig. 5. DRB dense residual module. The module consists of a Sobel gradient operator, a 3 3×  

convolution, a Leaky ReLU activation function, and a 1 1×  convolution dense connection. 

3.3 Loss function 

The purpose of processing the multi-focus image fusion task is to obtain high quality fused 
images to achieve our function optimization objective, but the optimization objective is 
difficult to measure directly, so the loss function is a metric that reflects the optimal objective. 
In the multi-focus image fusion task, the performance of the fused image includes the 
ambiguity of the image pixels and the similarity of the pixel information, we introduce three 
loss function optimization proposed network models based on the consideration of the image 
information itself, and the overall consideration of the network, in short, the loss function can 
be expressed as: 

 +sum Dice BCE ssimL L L L= +  (15) 

In the above equation, we introduce the Dice loss for medical image segmentation. The 
Dice loss does not require a new trade-off for the judgment of imbalance, while the similarity 
between two images can be calculated to predict the pixel activity level, and then the focus/out-
of-focus status of the target can be judged. For images in multi-focus, including focused and 
out-of-focus regions, the multi-focus image can be regarded as a dichotomous image, and then 
the BCE dichotomous loss optimization model is introduced. The BCE loss values are obtained 
by entropy, summation, and averaging operations for the predicted corresponding position 
points, as calculated in (16). 

 1 1
2 2

1 1 1 1

2
1

cN C c

ii c i
Dice cN C N C c

ii c i ci

L
g s

g s
= =

= = = =

= −
+

∑ ∑
∑ ∑ ∑ ∑

 (16) 



1244                                                      Wu et al.: PATN: Polarized Attention based Transformer  
Network for Multi-focus image fusion 

Where 
2

1 1

cN C

i c ig= =∑ ∑   and 2

1 1

N C c

ii c s= =∑ ∑   denote the true frame of the image and the 

decision diagram, respectively, using the function minimum optimization model, so the lower 
DiceL  indicates the better effect. 

The introduction of BCE loss can help predict the focus/out-of-focus state of the target and 
assist the model in determining the accuracy of the decision map, which is calculated as 
follows: 

 
1

1 [ log( ) (1 ) log(1 )]
N

BCE i i i i
i

L y p y p
N =

= − + − −∑  (17) 

Where N  is the total number of samples, iy  is the category to which the ith sample belongs, 

and ip  is the decision diagram for the ith sample. 
In addition, in order to enhance the pixel features of image recovery, measure the structural 

information of images, and judge the similarity between images, we introduce SSIM loss to 
help model optimization. The structural similarity SSIM is calculated as shown below. 

 1 2 , 3
2 2 2 2 2 2

1 2 3

2 2
( , ) x y xy x y

x y x y x y

C C C
SSIM x y

C C C
µ µ σ σ

µ µ σ σ σ σ
+ + +

= ⋅ ⋅
+ + + + +

 (18) 

Where, x  and y  denote the reference image and the fused image, respectively, xµ , yµ  

represents the mean of x , y , 2
xσ  and 2

yσ  represents the variance about  x  and y , 

xyσ   is the covariance about  x   and y  ,where 1C  , 2C   and 3C   are constants used to 
stabilize the denominator when it is close to 0. When the two images are infinitely close, the 
value of SSIM tends to 1 more, and on the contrary, SSIM tends to 0. The specific SSIM loss 
function is defined as: 

 1 ( , )ssimL SSIM x y= −   (19) 

We introduce these three losses to optimize the training model and enhance the 
reconstruction information of the pixels after image fusion. When any of the defined loss 
functions disappears in proportion, the performance of the network will be affected 
accordingly, weakening the final fused image quality. We set the hyperparameter value of all 
loss functions to 1 in this paper, so that the importance of each loss function is the same, and 
also find that each loss we introduce is indispensable for the optimization of the network model 
proposed in this paper. 

4. Experiments 

In this section, we evaluate our proposed method PATN based on three publicly available 
datasets and compare it with seventeen more advanced MFIF methods in the field of multi-
focus image fusion, including BFMF (2017) [18], CNN (2017) [19], CSR (2016) [20], 
DCT_Corr (2018), DSITF (2015) [21], DRPL (2020) [22], ECNN (2019) [23], FusionDN 
(2020) [24], GCF (2020) [25], GD (2016) [26], GFDF [27], MFF-GAN (2021) [28], GFF [29], 
IFCNN (2020) [30], MADCNN (2019) [31], MWGF (2015) [32], MGFF (2019) [33], PCANet 
(2019) [34], PMGI (2020) [35], SESF (2020) [36], and U2Fusion (2020) [37]. Among them, 
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methods such as GFF, CSR and MWGF belong to transform domain methods, methods such 
as DSIFT and GFDF belong to spatial domain methods, and methods such as CNN, ECNN 
and U2 belong to deep learning based methods. We introduce the datasets used in the 
experiments, the details of the network architecture training, the conduct of the comparison 
experiments, the selection of evaluation metrics and the ablation experiments respectively in 
subsections. After our comparative experiments, the results prove the effectiveness and 
generalization of our proposed method and show that the fusion performance of the 
experimental method in this paper is better than other MFIF methods. 

4.1 Dataset 

Since multi-focus image fusion is a means of integrating information by our comprehensive 
use, multi-focus images require that the input images are multiple sets of images from the same 
scene focused on different targets, and datasets that meet the requirements are difficult to 
obtain, so we use the COCO2014 dataset[38] commonly used for semantic segmentation to 
train our network. The dataset used for image segmentation generally includes the binary 
segmentation map of the source image, and for the multi-focus image fusion domain, we 
generate the fused images by: 

 A clear A blur BI I M I M= +e e  （20） 

 B clear B blur AI I M I M= +e e  （21） 

Where AI   and BI   are a pair of fused images, and clearI   and blurI   are a pair of source 

images, and AM  and BM  are complementary binary segmentation maps and conform to 

the relation 1A BM M+ = . 
We resize and grayscale the COCO dataset, which is then fed to the network for training. 

To consider the full performance of the network, we test the network using three MFIF datasets, 
including the lytro dataset[39], the MFFW dataset[40], and the tsai dataset. Among them, the 
lytro dataset contains 20 pairs of multi-focus images with a uniform size of 520 × 520. Since 
the out-of-focus diffusion effect (DSE) is not obvious in the lytro dataset, Xu et al. constructed 
a new benchmark MFIF dataset. The MFFW dataset contains 13 pairs of source images, and 
each pair of source images varies in size. Meanwhile, the tsai dataset contains 12 pairs of 
multi-focused images with different sizes of source images. The experiments in this paper test 
the average metric values for comparison on all three datasets mentioned, and the comparative 
performance on the datasets is shown in Section 4.4. 

4.2 Experimental Details 

The training process takes iterative training according to the characteristics of the network. 
The training process is run based on NVIDIA 2080 SUPER GPU using the Pytorch framework. 
Adam optimizer is used and hyeprtparameters are set as 1 0.9β =   and 2 0.999β =  .The 

initial value of the learning rate is 42 10−×  and the batch size is set to 8. The learning rate 
decreases with the training characteristics of the network throughout the epoch process in order 
to find the optimal model parameters. The learning rate is reduced to 58 10−× , 55 10−×  and 

52 10−×   in turn. The Transformer sliding window size is also set to 7 and the 
downscaling_factors parameter is (2,2,2,2), and the training process continues for 80 Epochs 
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to reach near-optimal values, which in turn stops the redundant training process. During the 
training process, the network loss decreases quickly, the model converges quickly, and the 
network is more stable. 

4.3 Ablation Experiments 

In order to ensure the effectiveness of each module of the proposed network, we conduct 
ablation experiments to test the help of the introduced modules on the network performance. 

4.3.1 PSA module 

We introduce the PSA mechanism to focus on the channel features and spatial features of 
the image feature map to strengthen the network's ability to extract the source image 
information and thus retain more source information. PSA can enhance the information at the 
pixel level, and we test the performance of the network with this mechanism removed. As 
shown in Fig. 6, when the mechanism is absent, there is more noise in the decision map of the 
fused image, while the division between the focused and out-of-focus regions is more obvious 
and the boundary transition is not harmonious, thus, the introduction of the mechanism is 
effective for the network to extract image features. 

 

 
Fig. 6. All ablation experiments performed experimentally. From left to right are: source image A, 

source image B, resultant decision diagram without PSA module, resultant decision diagram without 
DRB module, resultant decision diagram without BCE loss, resultant decision diagram without DICE 
loss, resultant decision diagram without SSIM loss and resultant decision diagram of our experiments. 

 

4.3.2 DRB: Dense Residual Module 

Since the image detail information obtained by pixel-level fusion of images is richer than 
feature-level-based fusion and decision-level-based fusion, but the technical equipment 
requirements are higher, and the fusion process is not easy to be processed in real time, we 
introduce the dense residual module based on Sobel gradient operator in the later stage of the 
network to enhance the information of fused images, which not only ensures the process of 
network processing, but also ensure the richness of the detail information of the fused image. 
As shown in Fig. 6, there is more noise on the decision map without the DRB module, and 
also, there is a problem that there is more error information at the edges of the decision map 
without the DRB to enhance the image edge information. 
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4.3.3 Loss Function 

We use the control variable method to remove the introduced loss functions sequentially, 
and the three decision maps obtained are shown in Fig. 6. We find that the absence of any of 
the loss terms affects the optimization results of the model, easily introduces wrong detail 
information, confuses the texture information in the fused images, and thus negatively affects 
the generated images and decision maps. The experimental results show that only the 
introduction of a complete loss function term to optimize our training model can guarantee 
superior fusion results. 

4.4 Comparison Experiments 

Considering the special characteristics of multi-focus image fusion, i.e., the MFIF method 
is based on a test set without GroundTruth for performance testing, there is no fixed single 
metric, so based on this characteristic, we consider the performance of the MFIF method from 
two perspectives: quantitative objective metrics and qualitative subjective visual experience. 

4.4.1 Objective evaluation on the Lytro dataset 

We tested all 20 pairs of images on the Lytro dataset, measuring the mean value of the 
method on this dataset and selecting the statistics of six quantitative metrics, as shown in Fig. 
7. The measures include Cvejie's metric cvQ  [41], gradient-based xyQ  [42], SSIM metric-

based YQ [43], phase-coherence-based PQ [44], spatial frequency error ratio-based ZQ  and 

spatial frequency SFQ [45], which are measured as follows: 

1) Cvejie's metric cvQ  : This metric is based on the similarity of pixel blocks between 
images as a metric to measure the degree of representation of the fused image to the 
information contained in the input image, and the larger the value of the metric, the better the 
subjective quality of the fused image obtained.   2) Gradient-based edge information 
quantity metric xyQ : The index value is calculated using the Sobel operator to calculate the 
edge intensity of the corresponding image, i.e., the value of the convolution with the Sobel 
operator is first calculated as 1 ( , )x

AC C x y=  , 2 ( , )y
AC C x y=  , 1C   and 2C   are the 

convolution values obtained using the Sobel operator in the vertical and horizontal directions, 

respectively. The edge intensities are 2 2
1 2( , )Ag i j C C= +  ,and the direction is 

1
1 2( , ) tan ( / )A i j C Cα −=  . The final assessment metrics are: 

1 1

1 1
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 ,where AQ  , BQ   are the edge retention 

information values of the input image, and w  are the weighting coefficients. The specific 
formula is understood in more detail in [46]. 3) SSIM-based metric YQ : The metric value 
mainly measures the similarity between the redundant and complementary regions, and the 
larger the metric value indicates the higher quality of the fused image. 4) Phase-coherence-
based PQ : The phase-coherence-based metric proposed by zhao et al. reflects the richness of 
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the image edge information and the image contour corner point information, and the larger the 
metric value indicates the richness of the fused image information. 5) Spatial frequency error 
ratio-based ZQ : This metric reflects the change in the local intensity information of the image, 

which potentially improves the image quality. 6) Spatial frequency based metric SFQ : This 
metric measures the activity level of the image by spatial frequency, and the larger the value 
of the metric, the better the image quality. 

   

   
Fig. 7. Comparison of the average metric values of the 17 methods with the method proposed in this 

paper on the Lytro dataset, with those marked in red representing the best values, those marked in blue 
representing the second best values, and those marked in green being the third best values. 

 
From Fig. 7, we see that PATN is first on average on the Lytro test set on YQ , PQ  as well 

as ZQ , and because PATN introduces the PSA mechanism of local attention and the dense 
residual blocks of the edge gradient-based Sobel operator to enhance the edge information, the 
fusion results of the images are rich in information at the target edges and contour corner points, 
and the intensity information of the image local changes can be captured sensitively. 
Meanwhile, the second highest mean value is accounted for on cvQ , xyQ  and SFQ , and these 
metrics reflect that PATN maintains better edge information and richer pixel information in 
the fused images compared with other MFIF methods. 

4.4.2 Objective evaluation on the MFFW dataset 

We tested the full dataset from the multi-focused image public test set MFFW, and also 
introduced two new metrics, for the metric based on multi-scale measurement of edge 
information preservation PWWQ [47] and the metric based on pixel-level metric /AB FQ  , and 
the metric values on the MFFW dataset are shown in Fig. 8. It can be seen that are optimal on 

PWWQ , /AB FQ , PQ  and ZQ , while ranking second on cvQ  and xyQ . The results show that 
PATN perceives the image edge information and fuses the visual information of the image are 
beyond the other MFIF methods. 
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However, from the results of the average index values of all MFIF methods used in this 
paper on the MFFW dataset, the overall average value on the MFFW dataset is lower than that 
on the Lytro dataset, and we analyze two multi-focus datasets, both of which are composed of 
focused and out-of-focus regions. The distinction between foreground and hindground regions 
on the MFFW dataset is not as clear as on the Lytro dataset. This may be one of the reasons 
for this difference in results. 

 

 
Fig. 8. Comparison of the average index values of the 17 methods with the method proposed in this 
paper on the MFFW dataset, with those marked in red representing the best values, those marked in 

blue representing the second best values, and those marked in green being the third best values. 
 

4.4.3 Objective evaluation on the TSAI dataset 

In addition to the Lytro dataset and the MFFW dataset, we also test the performance of the 
method on the TSAI dataset, while we test the method on the metrics of the human vision 
system model-based measures CBQ [48], and the results of the metrics on the TSAI test set 
are shown in Fig. 9. It can be seen that the mean value of PATN is first for all metrics, and the 
superior performance of the method is quantitatively and objectively reflected, which is 
sufficient to prove the robustness of our proposed framework. The TSAI dataset has similarity 
with the Lytro dataset, and the focused and out-of-focus regions are clearer, so the evaluation 
results of the MFIF method on these two datasets are better than those on the MFFW dataset. 
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Fig. 9. Comparison of the average index values of the 17 methods with the method proposed in this 

paper on the TSAI dataset, with those marked in red representing the best value, those marked in blue 
representing the second best value, and those marked in green being the third best value. 

4.4.4 Subjective visual evaluation on MFIF testsets 

We selected several sets of images from the test results of the three test sets for visual 
comparison of the methods, and considered various MFIF methods from the perspective of 
subjective visual experience. In Fig. 10, we find that the gradient-based GFDF method and 
PMGI are worse in overall visual sensory, appearing with dark image colors that do not match 
the color information of the real source images. GD, PMGI, and U2Fusion show poor results 
in the difference maps, all showing color distortion problems, while both foreground and 
hindground regions appear in the difference maps. CNN, CSR, DSIFT, ECNN, GD, and MGFF 
methods failed to accurately retain the detail information of the boundary line of the focus/out-
of-focus area. The "white dots" on the "grass" next to the "baseball" appear blurred. Meanwhile, 
the BFMF, DCT_Corr, GCF, GFF and PCANet methods did not fuse the "white dot" next to 
the "shoulder" well, and some of the fusion results did not even show the small target directly, 
and the artifacts were extremely serious. PATN's fusion result of the target next to the 
"baseball" was complete and clear, and the overall vision was good. 

 

 
Fig. 10. Visual comparison plots of the 18 methods on Lytro-01. The first and third rows show the 

result plots for each method, and the second and fourth rows show the result difference plots for each 
method. 
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Fig. 11. Visual comparison plots of the 18 methods on Lytro-06. The first and third rows show the 

result plots for each method, and the second and fourth rows show the result difference plots for each 
method. 

 
In Fig. 11, it is clear from the differential map that GD is exposed. And MGFF, MWGF, 

IFCNN, PMGI and U2Fusion appear in the differential map in both the front and rear fields. 
The left side of the "cross" of BFMF and GFDF is not shown in the differential map, and 

the PMGI as a whole shows a wide range of blurring. CNN, CSR, DCT_Corr, DSIFT, ECNN, 
GCF, GFF and MFF-GAN are not clearly blended at the "iron lock" in the blue frame, and the 
boundary between the front and back view areas is blurred, without good visual perception. 
PATN, on the other hand, blends clearly at the "cross" without extensive blurring and with soft 
colors. 

In Fig. 12, still as in Lytro-06, on Lytro-11, GD, MGFF, PMGI, and U2Fusion contain both 
focused and out-of-focus regions in the differential map, with poorer fusion. BFMF, CSR, 
DSIFT, GFDF, MGFF, PCANet and PMGI are blurred in the "camera" in the yellow box, i.e., 
there is still some room for improvement in the processing of small detail targets in these 
methods. Other deep learning-based MFIF methods, such as CNN, ECNN, IFCNN and MFF-
GAN, are quite effective in fusing out-of-focus regions of the image, and there is no color 
distortion, and the differential detail information of out-of-focus regions is also more complete 
in the differential map. 

 
Fig. 12. Visual comparison plots of the 18 methods on Lytro-11. The first and third rows show the 

result plots for each method, and the second and fourth rows show the result difference plots for each 
method. 
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Fig. 13. Visual comparison graph of three images selected on the TSAI dataset based on 18 methods. 

 
We tested on the TSAI dataset, and the TSAI dataset contains more targets in some images 

compared to the lytro dataset, and some of the focused and out-of-focus regions are blurred, 
and the source input images are of more general quality. As shown in Fig. 13, on the TSAI 
first image data, BFMF, DCT_Corr, ECNN, GD, IFM, MFM, MGFF, and PCANet methods 
all showed extensive blurring at the focus/out-of-focus boundary line, and poor visual results 
for image fusion in out-of-focus regions. The other deep learning-based MFIF methods 
produced okay visual results, and the unsupervised SESF fusion was also quite good. However, 
on the second image data of TSAI, deep learning-based MFIF methods such as CNN, DRPL, 
ECNN, IFCNN, TF, and scale invariance-based DSIFT all showed artifacts visible to the naked 
eye, resulting in visual indistinctness. Gradient-based methods such as GD, GFDF, and GFF 
even showed severe colour distortion and blurred patches, resulting in poor subjective visual 
perception. On the third image of TSAI data, DCT_Corr shows obvious block effect, while 
DSIFT and PCANet show "halo phenomenon", and the junction of focus/out-of-focus area of 
the fused image shows obvious and poor fusion effect. From the enlarged figure, we can see 
that the BFMF, CSR, ECNN, GD, IFCNN, MGFF, and SESF methods do not deal well with 
the DSE at the boundary of the "bottle cap" in the blue box. PATN showed neither colour 
distortion nor extensive blurring and small artifacts, and the fusion results were good on the 
TSAI dataset. 

 
Fig. 14. Visual comparison chart of 18 methods on MFFW-03. We zoom in on the local details as 

shown in the figure. 
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Fig. 15. Visual comparison plots of the 18 methods on MFFW-05. The second and third rows are plots 

of the results of the various methods, and the first and fourth rows are detailed plots of the various 
methods being partially enlarged.  

 
In Fig. 14, we find that the overall colour of PMGI and FusionDN is darker and less 

saturated, while the colour of the generic fusion framework U2Fusion local target is 
oversaturated and the local colour information is over-captured, resulting in a visual effect like 
overexposure. The image detail information is also blurrier using MFIF methods with fewer 
loss terms, such as ECNN and MADCNN, probably because the generalization ability of these 
methods on the MFFW dataset is not better represented. At the same time, the generalization 
ability shown by the methods that do not use the consistency check operation, such as DRPL, 
IFCNN, and MADCNN, is also more general. In Fig. 15, the deep learning-based CNN, ECNN, 
FusionDN, and MADCNN methods show a wide range of blurring, and the visual results 
obtained by the deep learning-based MFIF on this test image are poor. The gradient-based GFF 
and GCF methods show a wide range of blurring in the enlarged image area we selected, while 
MGFF and IFM show unclear petals in the "flower" area. The overall visual effect of PMGI is 
not good. The overall visual effect of the unsupervised SESF-based method is quite good, and 
there are no small artifacts, which can indicate that the post-processing of the image helps the 
fusion effect of the deep learning-based method. 

 

 
Fig. 16. Visual comparison plots of the 18 methods on MFFW-08. The second and third rows are plots 

of the results of the various methods, and the first and fourth rows are detailed plots of the various 
methods being partially enlarged. 
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In Fig. 16, FusionDN is visually dark and the image color is distorted, IFM shows wrong 
fusion information in the local area, PMGI shows a wide range of blurring at the "waterline". 
GCF has a lot of "water lines" that are not shown in the enlarged image, and MFIF based on 
deep learning, such as CNN, DRPL, IFCNN and MADCNN methods have comfortable overall 
color and clear fusion of detailed information, and the fusion effect is quite good, while ECNN 
has "fault " phenomenon. In general, the performance of general image fusion frameworks is 
not as good as the performance of methods specifically designed for the MIFIF task, such as 
the U2Fusion method, which is worse than the other MFIF methods. Our method uses multiple 
function loss terms to ensure that the trained model is more robust on different datasets, and 
we use consistency tests to correct the obtained decision maps. The final performance shows 
that the robustness and generalization of our method are better. 

5. Conclusion 

In this paper, a Transformer-based U-shaped architecture PATN is proposed to handle 
multi-focus image fusion tasks. PATN extracts deep features of images based on the long-
distance dependence property of Transformer mechanism, and introduces PSA parallel module 
to focus on both channel information and spatial information of features, so that deep and 
shallow features of images can be perfectly aggregated. The deep and shallow features of the 
image are perfectly aggregated. We then input the obtained feature maps to the feature 
enhancement stage of PATN, and introduce the DRB dense residual module to enhance the 
edge information of the image to ensure that the obtained fused image has correct and rich 
edge information. In addition, we introduce multiple losses in order to retain more texture 
detail information. The generalization and effectiveness of PATN are verified on three multi-
focus image fusion datasets, and the superior performance of PATN is demonstrated by 
comparing it with 17 existing MFIF methods. 
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